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Abstract —The Yang-Fourier transform (YFT) in fractal space is a generation of Fourier transform based on the loca fractiona
calculus. The discrete Yang-Fourier transform (DYFT) is a specific kind of the approximation of discrete transform based on the
Y ang-Fourier transform in fractal space. In the present letter we point out anew fractal model for the algorithm for fast Y ang-Fourier
transforms of discrete Y ang-Fourier transforms. It is shown that the classical fast Fourier transforms is a special example in fractal

dimensiong =1.
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1. Introduction

Local fractional caculus (fractal calculus) has
become a hot topic in both mathematics and engineering
[1-15]. Here we give the definition of local fractional

derivative [14-19]
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with A%(f(X)—f (%)) =I(1+a)A(f (X)— f(x,)) and the
definition of local fractional integral [14-19, 27]
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with At =t;,, ~t; and At=max{At,, At,,At;,...| , where
for j=0,..,N-1, [twtm} is a partition of the interval

[a,b] and t, =a,t, =b.

Recently, both Yang-Fourier transform (also local
fractional Fourier transform) was shown by [14-15, 17,
21-22, 24]
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and the inverse representation was in the form [14-15, 21-
22, 24]
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Furthermore, both Yang-Laplace transform (also local
fractional Laplace transform), [14-15, 18, 25, 26]
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and inversion [14-15, 25, 26]
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were introduced. Moreover, the discrete Yang-Fourier
transform (shortly called DYFT) was given in the form

[20, 23]
F (k)= f (W, ™ L7)
and inversion was read ale;(()), 23]
t=—2 LSFrmw. s
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with Wy, " =E, 'anak;# . Here, aim of this

letter isto suggest a new model for the fast Y ang-Fourier
transforms based on the discrete Yang-Fourier
transforms.

This letter is organized as follows. In section 2, the
fast Yang-Fourier transform of discrete Yang-Fourier
transform is given. In section 3, the fast Yang-Fourier
transform of inverse discrete Yang-Fourier transform is
considered. Conclusions are shown in section 4.

2. Fast Yang-Fourier transform of discrete
Yang-Fourier transform

In this section we start with the fast Yang-Fourier
transform of Y ang-Fourier transform. The relations
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are the component formulas for the Yang-Fourier
transform.
Suppose that {VO,Vl,VZ,...,VNfl} is the N, order

A
Starting with the component formulas for the discrete
Yang-Fourier  transform, we obtain that, for

n=012..N-1,
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discrete Yang-Fourier transforms of {VO,Vl,VZ,...
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and we have the following relation
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where V is the sequence vector corresponding to
{V AVAVARRY } V. is the M —th order sequence of

N/E

even-index V, 'S {VO,VZ,...,VNJ} and V, is the
M —th order sequence of odd-index V'S
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Here we can deduce that
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Here, formulas (2.6) and (2.7) contain common
elements that can be computed once for each | and then

used to compute both V, and V,, ,, . Hence we can obtain
the total number of computations to find all theV,'s.
That is to say, this process of increasing levels to our
algorithm can be continued to the K™ level provided to
N =2“N, for some integer N,

(12} < j
a z\% a V2]+l (27
j=0

. Moreover, that

integer, N, =2 “N will also be the order of the
discrete Yang-Fourier transforms and inverse discrete

Yang-Fourier transforms. If N = 2% | itisthisfina K™
level agorithm, fully implemented and refined, that is
called a fast Yang-Fourier transform of the discrete
Y ang-Fourier transforms.

3. Fast Yang-Fourier transform of inverse
discrete Yang-Fourier transform

In this section we start with the fast Yang-Fourier
transform of inverse Yang-Fourier transform. Similarly,

suppose that {VO AV Vi }|s the N, order discrete

Yang-Fourier transforms of {V \/l " ,VNfl_l}, starting

with the component formulas for the inverse discrete
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It is shown that, formulas (2.12) and (2.13) contain
common elements that can also be computed once for

each | and then used to compute both V, ™ and V,, ,, .
These can also yield the total number of computations to
find al the Vn’l's. That is to say, this process of

increasing levels to our algorithm of inverse discrete
Y ang-Fourier transforms is similar to that of the discrete
Yang-Fourier transforms. Taking into account the

relation N = 2 | itisalso thisfina K™ level agorithm,
fully implemented and refined, that is called a fast Yang-
Fourier transform of the inverse discrete Yang-Fourier
transforms.

3. Conclusions

In the present letter we suggest the fast algorithm for
the discrete Yang-Fourier transform (DYFT), which is a
specific kind of the approximation of discrete transform
based on the Yang-Fourier transform in fractal space] 20,
23]. Here, we call the fast Yang-Fourier transform.
Moreover, it is shown that the classical fast Fourier
transforms is a special example in fractal

dimension ¢ =1 . Based on the fast Yang-Fourier
transform, we may structure a new algorithm for the
generalized Fourier transformsin fractal space.
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