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Abstract –The Yang-Fourier transform (YFT) in fractal space is a generation of Fourier transform based on the local fractional
calculus. The discrete Yang-Fourier transform (DYFT) is a specific kind of the approximation of discrete transform based on the
Yang-Fourier transform in fractal space. In the present letter we point out a new fractal model for the algorithm for fast Yang-Fourier
transforms of discrete Yang-Fourier transforms. It is shown that the classical fast Fourier transforms is a special example in fractal
dimension 1  .
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1. Introduction

Local fractional calculus (fractal calculus) has
become a hot topic in both mathematics and engineering
[1-15]. Here we give the definition of local fractional
derivative [14-19]
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with            0 01f x f x f x f x       and the

definition of local fractional integral [14-19, 27]
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with 1j j jt t t   and  1 2max , , ,...jt t t t     , where

for 0,..., 1j N  ,
1,j jt t    is a partition of the interval

 ,a b and 0 , Nt a t b  .

Recently, both Yang-Fourier transform (also local
fractional Fourier transform) was shown by [14-15, 17,
21-22, 24]
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and the inverse representation was in the form [14-15, 21-
22, 24]
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Furthermore, both Yang-Laplace transform (also local
fractional Laplace transform), [14-15, 18, 25, 26]
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and inversion [14-15, 25, 26]
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were introduced. Moreover, the discrete Yang-Fourier
transform (shortly called DYFT) was given in the form
[20, 23]
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and inversion was read as [20, 23]
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. Here, aim of this

letter is to suggest a new model for the fast Yang-Fourier
transforms based on the discrete Yang-Fourier
transforms.

This letter is organized as follows: In section 2, the
fast Yang-Fourier transform of discrete Yang-Fourier
transform is given. In section 3, the fast Yang-Fourier
transform of inverse discrete Yang-Fourier transform is
considered. Conclusions are shown in section 4.

2. Fast Yang-Fourier transform of discrete
Yang-Fourier transform

In this section we start with the fast Yang-Fourier
transform of Yang-Fourier transform. The relations
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are the component formulas for the Yang-Fourier
transform.

Suppose that  0 1 2 1, , ,..., NV V V V  is the thN order

discrete Yang-Fourier transforms of  0 1 2 1, , ,..., Nv v v v  .

Starting with the component formulas for the discrete
Yang-Fourier transform, we obtain that, for

0,1,2,..., 1n N  ,
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where V is the sequence vector corresponding to

 0 1 2 1, , ,..., NV V V V  , EV is the M th order sequence of

even-index 'kv s  0 2 2, ,..., NV V V  and OV is the

M th order sequence of odd-index 'kv s

 1 3 1, ,..., NV V V  .
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Hence for 0,1, 2,..., 1l m  ,
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Here, formulas (2.6) and (2.7) contain common

elements that can be computed once for each l and then
used to compute both lV and M lV  . Hence we can obtain

the total number of computations to find all the 'nV s .
That is to say, this process of increasing levels to our
algorithm can be continued to the thK level provided to

02KN N for some integer 0N . Moreover, that

integer, 0 2 KN N will also be the order of the
discrete Yang-Fourier transforms and inverse discrete

Yang-Fourier transforms. If 2KN  , it is this final thK
level algorithm, fully implemented and refined, that is
called a fast Yang-Fourier transform of the discrete
Yang-Fourier transforms.

3. Fast Yang-Fourier transform of inverse
discrete Yang-Fourier transform

In this section we start with the fast Yang-Fourier
transform of inverse Yang-Fourier transform. Similarly,

suppose that  1 1 1
0 1 1, ,..., NV V V  

 is the thN order discrete

Yang-Fourier transforms of  1 1 1
0 1 1, ,..., Nv v v  

 , starting

with the component formulas for the inverse discrete
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Yang-Fourier transform, we obtain that, for
0,1,2,..., 1n N  ,
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It is shown that, formulas (2.12) and (2.13) contain

common elements that can also be computed once for

each l and then used to compute both 1
lV  and 1

M lV 
 .

These can also yield the total number of computations to

find all the 1 'nV s . That is to say, this process of
increasing levels to our algorithm of inverse discrete
Yang-Fourier transforms is similar to that of the discrete
Yang-Fourier transforms. Taking into account the

relation 2KN  , it is also this final thK level algorithm,
fully implemented and refined, that is called a fast Yang-
Fourier transform of the inverse discrete Yang-Fourier
transforms.

3. Conclusions

In the present letter we suggest the fast algorithm for
the discrete Yang-Fourier transform (DYFT), which is a
specific kind of the approximation of discrete transform
based on the Yang-Fourier transform in fractal space[20,
23]. Here, we call the fast Yang-Fourier transform.
Moreover, it is shown that the classical fast Fourier
transforms is a special example in fractal
dimension 1  . Based on the fast Yang-Fourier
transform, we may structure a new algorithm for the
generalized Fourier transforms in fractal space.
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